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ABSTRACT

Particle simulations, in which collective phenom-

ena in plasmas are studied by following the self-
consistent motions of many discrete particles, in-
volve several highly repetitive sets of calculations

that are readily adaptable to SIMD parallel pro-

cessing. We describe a fully electromagnetic, rela-

tivistic plasma simulation for the MPP. The particle

motions are followed in 21 dimensions (two spatial
and three velocity) on a 128 x 128 grid, with pe-
riodic boundary conditions. The two-dimensional

simulation space is mapped directly onto the pro-

cessor network; a Fast Fourier Transform is used to

solve the field equations. Particle data are stored ac-

cording to an Eulerian scheme, i.e., the information

associated with each particle is moved from one lo-

cal memory to another as the particle moves across

the spatial grid.

The method is applied to the study of the non-

linear development of the whistler instability in a

magnetospheric plasma model, with an anisotropic
electron temperature. The wave distribution func-

tion is included as a new diagnostic to allow simu-

lation results to be compared with satellite observa-

tions. Since the physics of self-gravitating systems

is quite similar to plasma physics, incorporation of
free-space boundary conditions and alteration of the

field equations enable our code to be used for the

study of density waves in galaxies.

Keywords: Particle Simulation, Plasma Physics,
Stellar Dynamics, Parallel Processing.

I. INTRODUCTION

The research work described in this paper belongs
to a relatively new category: the exploratory use of

parallel processors for the particle simulation of rar-

efied media. By a 'rarefied' medium we mean one in

which the collisional mean free paths are not neces-

sarily small on the scale of the systems considered,

with the result that it cannot always be approxi-

mated satisfactorily as a continuous fluid. Plasma,

which is the main constituent of the Universe, is a

prime example. Among the very diverse phenomena

that can occur in a plasma, some of the most inter-

esting are highly nonlinear, and therefore difficult

to analyze theoretically. For the plasma theorist,
a powerful alternative and complement to analytic

study is the use of particle simulation in a computer.

'Particle simulation' is the generic term for com-

putational procedures in which a medium is repre-

sented in the computer as an assembly of discrete

interacting particles. In a plasma the particles axe

ions and electrons, interacting through the electric

and magnetic fields that they themselves create. At

each time step in a simulation, the con _ter h_

two distinct tasks to perform: it must update the

positions and velocities of the particles, taking ac-

count of their accelerations due to the fields, and

it must update the electric and magnetic fields, the
sources of which are, respectively, the charge den-

sity calculated from the positions of the particles,

and the current density calculated from both their

positions and their velocities.

Now, even a modest volume of plasma may con-

tain a very large number of particles: in Earth's

ionosphere, for instance, there are typically 10 Is
electron-ion pairs per cubic metre. Computer

simulations necessarily involve much smaller num-

bers, not more than a few times 106 for present-

day single-processor computers ('uni-processors'),
so each of the simulation particles actually stands

for very many particles in the real world; they axe

sometimes called 'superparticles' for this reason.

Besides the reduction in the number of particles,

other simplifications are often made in order to re-

duce the demand for computing time. The common-

est is to reduce the dimensionality, by considering

systems in which all physical quantities vary in only

one or two dimensions. This simplification can be

very helpful, provided that it is authorized by the
symmetry of the problem, but otherwise it is objec-
tionable because it makes the simulation unrealistic.

Another common way of simplifying plasma simu-

lations is to ignore electromagnetic radiation by as-
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suming that the speed of light is infinite. However,
the real world is three-dimensional and the speed

of light is finite, so most of the outstanding prob-

lems in plasma physics that are amenable to parti-

cle simulation will ultimately need to be tackled in

three dimensions/3-D} using a fully electromagnetic

(EM) code.

Probably the most advanced EM particle code in
existence is the TRLdimensional STANford code

TRISTAN, written in assembler language for the

Cray-1 computer; see Ref. 1 for an account of an
earlier version of this code. It follows the motion of

about 5 x 106 particles in a cubical volume divided

up into 1283 cells, i.e., each side of the cube is di-
vided into 128 units. These numbers are not extrav-

agant: if anything, they err on the side of modesty,
and codes with more particles and cells are likely to

be required in the future. Already, however, the pre-

liminary tests of TRISTAN have revealed a severe

problem of computer usage. Though the assembler-

language code has been carefully optimized, a single

time step requires 2-3 minutes of CPU time on the

Cray-1, and a typical simulation requires 500-1000

steps. Difficulty in obtaining the requisite amount
of computer time has already set back several re-

search programs where the use of TRISTAN was

envisaged. This is just one instance of a critical sit-

uation which is now widely recognized, namely that

advanced particle simulation is up against a barrier

due to the speed limitations of uni-processors.

Other advanced approaches to 3-D plasma simula-

tion exist, namely the statistical methods involving

numerical integration of the collisionless Boltzmann

equation or of the Fokker-Planck equation. For-

mally, they are equivalent to following the motion of

a fluid in a 6-D space, which has three dimensions
of velocity as well as the three dimensions of posi-

tion. For a given number of cells in position space,

however, these methods demand even greater com-
puting speed.

The prospects for large increases in the speed of uni-

processors are not encouraging: fundamental physi-

cal constraints on VLSI technology are expected to

limit them to factors of less than 100. For larger in-

creases, we must look to multi-processors, i.e., com-

puters consisting of multiple processors arranged in

parallel architectures, such as the MPP.

Though the MPP was designed originally for pro-

cessing image data from the Landsat satellites, its

architecture, involving a large number of simple pro-

cessors with nearest-neighbor connections, is well

suited to the particle simulation of rarefied media,

and incidentally to fluid simulation as well (Ref. 2}.

The motion of particles or fluid in a given spatial

cell is determined only by conditions prevailing in-

side that cell, and at its boundaries with neighbor-

ing cells. {At least, this is the case so long as we
refrain from making the approximation in which dis-

turbances propagate across the array of cells instan-

taneously}. Hence problems concerning such motion

can be mapped readily onto simple arrays of proces-

sors in which direct connections exist only between

nearest neighbors.

In the present program of research, our initial aims

were to gain enough experience in the use of the

MPP to be able to answer the following questions:

• Which of our plasma simulation problems can be

solved on this type of multi-processor?

• Is there a significant gain in speed, compared with

plasma simulations on a uni-processor?

• Could the capability of the MPP for plasma sim-

ulation be improved in any simple way?

• Would any other type of multi-processor be better

suited to our problems, and if so which?

In sum, we wished to investigate the potentialities

and limitations of massively parallel processors for

plasma particle simulation.

Shortly after the investigation began, however, its

scope was extended to include particle simulation
of problems in stellar dynamics, this in collabora-
tion with Dr. Bruce Smith of NASA Ames Research

Center. Stellar dynamics is very similar to plasma

electrodynamics in respect of its basic physics. Both

plasmas and stellar systems are examples of rarefied
media, and problems concerning either of them are

cases of the classical N-body problem with inverse

square law interactions. Each, of course, also has its

specificity: stellar dynamics involves long-range in-

teractions, from which plasmas are exempt because
of Debye shielding; plasma electrodynamics involves

magnetic fields, which have no counterpart in non-

relativistic stellar dynamics. Nevertheless, the two

fields have much in common, so naturally there are
close similarities between the methods of particle

simulation that have been developed for each of

them. For the same reason, many possibilities exist

for cross-fertilization between them, and for joint
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efforts to solve common difficulties. These consid-

erations led us to extend the scope of the program

in this way.

The present paper is an account of the work per-

formed during the first year. Section 2 outlines

the two physical problems, one in plasma electro-

dynamics and the other in stellar dynamics, that

have been chosen for simulation, and how we are ap-
proaching them; for simplicity, both simulations are

in two spatial dimensions instead of three. Section

3 describes the numerical techniques used for the

plasma simulation, and Section 4 the modifications

required for the gravitational simulation. Section 5

indicates how these various algorithms are being im-

plemented on the MPP, while the current status of

the work is described in Section 6. Finally, in Sec-

tion 7, we draw some provisional conclusions and

sketch our plans for the future, in both the short
and long terms.

2. PHYSICS PROBLEMS

Recapitulating, our immediate objectives are to pro-

gram the MPP to solve, by particle simulation, a
significant problem in each of the two fields men-

tioned above, namely stellar dynamics and plasma

electrodynamics.

The simpler of the two problems is the one in plasma
electrodynamics, which concerns the nonlinear de-

velopment of the Doppler-shifted electron gyroreso-
nance instability, or 'whistler instability' for short.

It is a very suitable problem for solution on the

MPP, for several reasons. Firstly, it is one in which

only the electrons are involved, while the ions can

be treated as an inert neutralizing background. The

simulation algorithms are simpler if only one type

type of particle needs to be represented. Secondly,

the whistler instability is of the velocity-space va-
riety, so it can occur even in a spatially uniform

plasma. By assuming uniformity as an initial con-

dition, we should succeed in sharing the comput-

ing load evenly between the different processors.

Finally, it is an electromagnetic instability, which

means that field disturbances originating in any one
spatial cell propagate to the other cells at finite ve-

locities. Such propagation can be modeled read-

ily on the MPP, in which each processor is con-
nected only to its four nearest neighbors. Despite

its apparent simplicity, the nonlinear evolution of

the whistler instability has not been simulated be-
fore in the conditions in which we intend to do so.

This problem has applications both to space and to
fusion plasma physics.

To the best of our knowledge, all previous simu-

lations of the whistler instability have been one-

dimensional. The most recent, by Bharuthram and

Baboolal (Ref. 3), w.ere in several other respects

quite similar to those that we are proposing. Thus,

for instance, these authors used a fully electromag-
netic code, gave the electrons a bi-Maxwellian ve-

locity distribution at the outset, and followed the

growth of the instability into the nonlinear regime.

They obtained a variety of interesting scientific re-

sults: for instance, the wave mode that, during

the initial linear phase of the instability, grew most

rapidly, died out in the post-saturation pha_e, and

ultimately was replaced by a slower-growing mode

which dominated the wave spectrum at the end of
the simulation.

Using our MPP code, we intend to study the nonlin-

ear evolution of the whistler instability under much

the same conditions, except that our simulations

will be performed in 2½-D (i.e., in two spatial dimen-

sions, but with all three components of velocity).
We expect that the increase in dimensionality will

lead to qualitatively new scientific results: in par-

ticular, we anticipate that waves will be generated

over a broad frequency band, with their wave nor-

mal directions spread widely around the direction
of the steady magnetic field. We shall study how
the characteristics of the wave field in the nonlinear

regime depend on the initial plasma conditions.

For these simulations,the code willhave to be en-

hanced with sophisticateddiagnostics,especiallyfor

the fields.The factthat italready includes a two-

dimensional FFT should be very helpfulin thisre-

spect,enabling wave power spectra,dispersionre-

lations,temporal autocorrelationfunctions,etc.,to

be derived by existingtechniques,developed previ-

ously for serialprocessors.

Additionally,we propose to employ a new diagnostic

procedure,hithertoused only foranalyzingwhistler-

mode wave data from satellitesin the Earth's mag-

netosphere. This isthe so-called'wave distribution

function'(WDF), which specifieshow the wave en-

ergy densityisdistributedwith respecttofrequency

and towave normal direction(Refs.4-7). The ready

availabilityof thisdiagnosticwill,in the future,fa-

cilitatecomparisons between the resultsfrom nu-

merical simulationsof the whistler instability,and

observations of natural whistler-mode wave fields
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generated by the same instabilityin space.

In stellar dynamics, we shall investigate the stability

of an axisymmetric system (galaxy or protoplane-

tary nebula}, albeit that problems of this type have
been simulated previously on conventional comput-

ers. The interest of repeating one of these simula-
tions on the MPP is that it will introduce some of

the difficulties that are bypassed in the whistler in-

stability problem. Although, again, the dynamics
involve only one type of particle, the absence of a

neutralizing background of particles of another type

means that the inter-particle forces are not shielded

in any way, so they are truly long-range. For this

reason, all physically significant systems are spa-

tially non-uniform. Finally, the times required for

gravity to propagate across such systems are very
small compared with the time scales characteriz-

ing their dynamics (e.g., the rotation period of a

galaxy), so little accuracy is lost and much comput-
ing time saved by assuming that the propagation

is instantaneous. Thus, besides the physical inter-

est of this problem, its simulation on the MPP will

have interesting computer science aspects.

3. NUMERICAL TECHNIQUES

Details of the particle-mesh method may be found in

the standard texts on plasma simulation (e.g., Refs.

8-10}. We summarize here the techniques chosen
for the MPP code.

The purpose of the simulation model is to follow the

self-consistent dynamics of fields and particles for

several thousand time steps. Fields, densities and

other spatial functions are stored as values at points
on a grid. Initially, our simulation is restricted to

two spatial dimensions for simplicity. The motion

of a large number of particles {of the order of 105
to 106), each representing many particles in the real

world, is followed through successive time steps.

Initially, particles are arranged in positions (x, y)
that result in the required plasma configuration. For

our present purposes, uniform density is specified.

Particles are assigned random velocities (vx, vy, Vz)
according to a Gaussian distribution with suitable
thermal and drift velocities.

As isusual in numerical simulations,point particles

are replaced by cloudsof charge to prevent impulse-

likeinteractionswhich giveriseto collisionaleffects

(Ref. 11). Long-range particlepotentialsare re-
tained in the Coulomb form to model collectiveel-

fects, but a shape function

1
S(r} -- 2_,2 exp(-r2/2a 2) (3.1)

is introduced so as to 'soften' the particle potential

within the range r < a (usually of the order of a
Debye length).

In order to calculate the fields set up by the charges,

it is necessary to obtain the charge and current den-

sities p and J on the spatial grid. A simple al-

gorithm is used which produces the same results

as the Subtracted Dipole Scheme (Ref. 12). The

charge density array is compiled from the superpo-

sition of a unit charge at each particle's nearest grid

point (NGP), plus small contributions at its four
neighboring grid points which reproduce the dipole

moment of the charge relative to its NGP.

The electric and magnetic fields (E and B) axe gov-
erned by Maxwell's equations. With the inclusion

of the shape factor, Amp_re's and Faraday's laws
become

aE(r)
at

and

-- = c[V × B(r) - 4rJCr }* SCr}] (3.2)

aB(r)

Ot
- cv (3.3)

where the asterisk denotes convolution and c is the

speed of light. Gauss' law,

V.E(r) = 4rp(r) * SCr) (3.4)

is satisfied by the initial conditions and will continue

to hold if the continuity equation is satisfied. How-

ever, microscopic inconsistencies between p and J

arise due to the use of the mesh (Ref. 13). To pre-
vent the resulting growth of noise in the fields, it is

common to split the electric field into longitudinal

and transverse components Et and Et (Ref. 9), us-

ing Gauss' law to obtain El and Faraday's law to

deduce Et. It is thus necesary to solve both ellip-

tic and hyperbolic equations in this system; the use
of Fourier or Hartley transforms provides a simple

solution, as well as helpful diagnostics.
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The fieldequations are integratedin time using a

leap-frogmethod with time step At. Fouriertrans-

forming (3.2),(3.3)and (3.4)and includingthe time

differencinggives

1

E_'(k)= E_'-1(k)+ cAt{ik× B"-_(k)-

1 1

4_SCk)[J"-_(k)- (J"-_(k).klk2)k]} (3.S)

1 1

B"+_(k)= B"-_(k)-icAtk×E_'(k)(3.6)

E_(k) = - 4_rpn(k)SCk)klk 2 (3.7)

The superscriptsdenote the time step at which the

fieldisknown:

fn = f(to-f"nat) (3.8)

The stabilityof the method is governed by a

Courant-Friedrichs-Levy (CFL) condition:

(km_. cAt) 2
< I (3.9)

where kmax isthe highest spatialfrequency occur-

ring inthe simulation.

Once the fieldsare known on the spatialgrid,the

forceson the particlesmay be calculatedby inter-

polation.The relativisticequation ofmotion is

dp ( q )p×B7f = qE+ _-_ (3.10)

where p isthe relativisticmomentum, mo isthe rest

mass, and

_t = 1/x/1 - v2/c 2 (3.11)

A problem arisesbecause of the appearance of the

momentum in the vector product inequation (3.9).

A well-establishedsolutiondue to Boris (Ref. 14)

isemployed: the momentum isadvanced using the

electric field only for half a time step, then a rota-
tion of the resulting intermediate momentum vector

by the magnetic field is carried out and finally the

second 'half-push' by the electric field is performed.

One of the advantages of applying the full relativis-

tic treatment is that .a top speed for both field and

particle propagation is provided, and can easily be

tailored so that the CFL condition (3.9) is obeyed.

Advancement of the particles' positions closes the

main simulation loop, since the charge and current

densities may be evaluated again.

4. GRAVITATIONAL SIMULATION

Particle-mesh simulation is a well-known technique

in the investigation of the evolution of spiral galaxies

(Ref. 8). Since the algorithms for gravitational sim-

ulations are so closely related to those for plasma, it

seems worthwhile to construct them in parallel. The

main differences between the programs are summa-
rized here.

The gravitational potential ¢(r) is used instead of
the fields. It is governed by Poisson's equation

V2¢(r) = 4rGp(r) (4.1)

where p is the mass density and G the gravitational

constant. Solutions are obtained by convolving the

Green's function for this equation, i.e., the single

particle potential, with the particle number density

function p/too. The point particle potential

Grno
¢ = (4.2)

r

is replaced by the 'soft' potential

Gmo (4.3)
Cp = _ -[- a2

so that shape factors do not appear explicitly in

this formulation. The convolution is accomplished

in Fourier transform space.

For modeling isolated galactic systems, free-space

boundary conditions are imitated by confining the

particles to 1/4 of the grid, a square of sides L, and
truncating Cp beyond x = ±L/2 and y = ±L/2
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(Ref. 8). Although periodic images of the simu-

lation plane are still produced by the fast Fourier

transform, they can no longer influence each other

across the empty buffer zone.

5. IMPLEMENTATION ON THE MPP

It will be seen from the above description that there

are two main areas of the simulation algorithm with

a high degree of parallelism: handling the fields

and densities on the spatial grid, and processing

the large number of particles moving though the

space. This dichotomy appears in the data struc-
ture adopted for the simulation.

In the simplest approach, a spatial grid of 128 x 128
cells is mapped directly onto the two-dimensional

array of processing elements (PE's), as illustrated
in Figure 1. The local memory holds p, J, El, E_

and B associated with the corresponding grid point.

The contents of the array unit (ARU) memory may

be shifted across the network and wrapped around

at the edges; extensive use is made of this feature in

the fast Fourier transform for solving the field equa-

tions. Because it is a global method, the FFT has

the disadvantage of requiring communication be-

tween distant processors in the network. An attrac-
tive alternative is to employ local methods of field

solution, in which each processor would demand

data from its nearest neighbours only (Ref. 15).

However, the FFT isretained for the present as a

usefulgeneral tool,since itsnumerical stabilityis

well understood, and also itprovides standard di-

agnostics.

The particle data structure presents a more inter-
esting problem. Provision must be made for the

information associated with the particles to move

across the network in order to interact with appro-

priate data on the grid. Two alternative schemes,

which may be used in some combination, exist.

In one disposition, information for a given particle is

stored in the memory location corresponding to its

position on the grid (Figure 1). Local calculations
of densities and forces may then be made without

communication beween processors. However, the

packet of information must be moved when the par-

ticle travels to a new cell in the grid. This method

has the disadvantages that memory overflow may

occur in some locations, and that the workload is

not distributed evenly among the processors unless

the particle density is more or less uniform.

ARU memory

particle

planes

global

variables

simulation

grid

I

II1__ i i i i i

IIIIIIII

IIIIIIII

IIIIIIII

/ _ u/O _. o/n/o/u o/o U/oOlUo/

/o/_yo% / /6/o/O/oO/O/.:
X

Figure 1. Mapping the particle data to memory.

Each local memory contains data for particles in

the corresponding cell in the simulation plane.

The alternative is to store particles in a uniform way

in memory, in arbitrary locations. Particle and/or

field data must then be transported across the net-

work to a common processor when calculations in-

volve both types. This scheme should prove useful

when large density variations exist or when particles

move though several cells per time step; Hoshino

and Takenouchi (Ref. 16) proved a variation of it
to be the more efficient scheme in a particle-particle

molecular dynamics model on the PAX parallel pro-
cessor.

In the case of an initially homogeneous plasma, how-

ever, large density differences are not produced ex-

cept in extreme circumstances, and particles may
be restricted from traveling more than one cell in a

time step by setting the speed of light to this value.

For our present purposes, therefore, we decided to
use the first of the two schemes outlined above. The

scheme also has the attraction of being a 'natural'

mapping, and for this reason a variant of it was

used in a 3-dimensional particle-mesh simulation of

galactic gas dynamics on the ICL DAP by Johns

and Nelson (Ref. 17).
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Figure 2 shows a flow chart outlining the algorithm.

Calculations are carried out in two major proce-
dures, titled 'Particles' and 'Fields'. The only global

I ENTRY I

_PARTICLES _

I particle initialization I

Bj:i=oPr_Smh an ager
density calculation _1

STAGING MEM. I

particle
co-ordinates

_FIELDS _

forward FFT

Gauss' Law

Maxwell's equations
truncation

reverse FFT

I E_, E_, B'*+½ I

field initialization

_=_ save old fields

I

next time step

Figure 2. Flow chart for the plasma simulation al-
gorithm.

parallel arrays that have to be carried between these

are the variables required by both: p and J (the

output of 'Particles' and the input of 'Fields'}, and

El, Et and B {the output of 'Fields' and the input
of 'Particles'}. These data are stored in the ARU

throughout the main time loop.

Particle data exist in the ARU only as local vari-

ables in the procedure 'Particles', and are stored

in the staging memory (SM} during the rest of the

execution. The procedure contains a loop which is

executed once for each plane of particle data in the

SM, as follows. A 'particle plane' is moved from

the SM to the ARU. Values of the magnetic field

and the total electric field axe interpolated in each

cell at the particle positions (x, y}. {Operations are

masked out in cells containing no particles}. New
velocity components are obtained by applying the

Boris push, and the position is updated with the

new velocity. The new co-ordinates {x, y} axe tested

to see whether the pax. ticle has moved to a new cell

on the simulation grid, and a moving direction D

assigned accordingly. The speed of light is normal-

ized to one cell per timestep, so that no particle

can move further than to one of its eight nearest

neighbours; hence there are nine possible values of

D, including the null move.

An innerloop isthen carriedout foreach direction.

The particleswith appropriate D are copied into a

workplane which isshiftedtothe new location.The

densitiesp and J are updated with the new informa-

tion. Distributionfunctions are accumulated when

needed via a cascade sum. The workplane contents

are then copied to the top of the stack of particles

alreadymoved. Iffullplanesexistinthe stack,they

are sent to the SM. The next SM plane isthen re-

trieved.Afterthe lastplane has been processed,the

remaining particleplanes are written out to the SM

to clearthe ARU of particledata.

In a fully electromagnetic program, the field solver

requires nearly all the available ARU space. The 1-

dimensional FFT that we use is based on a straight-

forward Cooley-Tukey algorithm (Ref. 18}, and op-
erates on 128 elements along either rows or columns.

Equations 3.5 to 3.7 are solved in transform space

using the El, Et, and B values from the previous

time step.The shape factorand coefficientsinvolv-

ing k are recalculatedateach time step tominimize

the space required for globalvariables.Transverse

fieldsare truncated for Irgreater than some value

specifiedby the user tomeet the CFL condition3.9.

The spatialvariationofone component of the field

ofa singleparticleisshown in Figure 3.

Particle initialization is accomplished in 'Particles'
by setting up co-ordinates in the ARU plane by

plane. A random number generator based on a ran-

dom bit-plane generator developed at NASA God-

dard Space Flight Center is used to initialize veloc-

ities. Up to twelve uniformly distributed random

numbers are added to produce a distribution func-

tion closely approximating a Gaussian. Field ini-

tialization takes place through the inclusion of 'old'

fields in Maxwell's equations: external fields are in-

troduced in this way.
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Figure 3. Spatial variation of the z-component of the longitudinal electric field due to a charge with radius 
1 grid cell placed at the center of the grid. Units are arbitrary. 

6. STATUS OF THE C O D E  

Considerable time has been spent in developing ba- 
sic tools such as the FFT, the random number gen- 
erator, input/output routines, etc. These are now 
in working order. The particle memory manager is 
complete and is being tested with the particle ini- 
tialization. The calculation section of ‘Particles’, 
which contains the interpolation, the Boris push, 
the distribution function calculation and the density 
accumulation, is in the final stages of development. 
The procedure ‘Fields’ awaits only the debugging of 
the transverse field section; preliminary results have 
been shown in Figure 3. Thus, as we go to press, 
the code appears to be close to final assembly. 

7. C O N C L U S I O N S  

Since we have not yet performed a complete sim- 
ulation on the MPP, it would be premature to 
try to give any firm answers to the four questions 
raised in Section 1. Nevertheless, we feel that suffi- 
cient progress has been made to allow us to express 
opinions as to what the answers are likely to be. 

For instance, it is already clear that the two physics 
problems we have chosen, one in plasma physics and 
the other in stellar dynamics, can be simulated on 
the MPP without posing any difficulties of princi- 
ple. The main practical difficulty is likely to be that 
of load balancing, i.e., of ensuring that the com- 
putational work load is shared evenly between all 
the processors in the array. In our present com- 
putational scheme, where the simulation domain 
is mapped directly onto the processor array, load 
balancing becomes difficult whenever the physical 
medium is inhomogeneous. Thus our stellar dy- 
namics problem is more difficult, in this respect, 
than our problem in plasma physics, as may be seen 
from their descriptions in Section 2. Other plasma 
physics problems, however, such as those involving 
magnetically confined plasmas, would also be sub- 
ject to this difficulty, which we perceive as the main 
one to be overcome in order that the potential of 
the MPP for particle simulation of rarefied media 
may be fully realized. The foregoing remarks relate 
to the first two questions raised in Section 1. 

As regards the third question, we can already sug- 
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gest several features that might be incorporated into
a second-generation MPP, so as to improve its capa-

bility for particle simulation. There is a clear need

for a larger random-access memory (RAM) associ-

ated with each processing element (PE}, particu-

larly if some future simulations are to be made in

3-D. At present, with only 1 Kbit of RAM per PE,
we would be restricted to 2-D simulations with fewer

than 10 particles per spatial cell, were it not that we

are also using the staging memory for storing data
on the positions and velocities of the particles; how-

ever, the use of the stager for this purpose entails

a speed penalty. Another measure that might be

taken to increase the computing speed is to intro-

duce some degree of parallelism into the PE arith-

metic; the present capability of varying the word

length by 1-bit increments would probably have to

be sacrificed, but this feature is less important in

particle simulation than it is in image processing.

On the fourth and last question, as to the rela-
tive merits of the MPP architecture versus possible

alternative architectures in the application to rar-

efied media simulation, we are now doubtful as to

whether whether our present research program will

yield a clear-cut answer. At the outset, we felt that

the very simple way in which our square simula-

tion domain can be mapped directly onto the square
array of PE's made the MPP architecture a natu-

ral choice, but now we are less sure, in view of the
acuteness of the load-balancing difficulty mentioned

above. In any case, a final decision could not be

taken until after some experimentation with other

architectures such as the hypercube.

These considerations govern our plans for the fu-
ture. In the short term, continuing the present re-

search program through a second year, we shall en-
deavor to fully realize our immediate physics and

computer science objectives by exploiting the pos-

sibilities of the MPP to the utmost. The physics

objectives are to achieve realistic 2-D simulations

of the chosen plasma and gravitational phenomena.

The computer science objectives are to improve the

simulation algorithms, notably by solving for the

fields by direct numerical integration of Maxwell's

equations rather than by transform methods. More-

over, in order to promote load balancing, we shall

investigate the use of sort/merge routines to man-

age the particles, permitting the data concerning
them to be stored in PE's other than those that

correspond directly to their spatial positions in the
simulation domain. Without going so far as to store

these data in arbitrary locations, we feel that it may

be helpful to allow them a certain latitude. This

more flexible storage scheme should certainly help to

reduce load unbalance resulting from random fluctu-

ations of particle concentration in a statistically uni-

form medium, such as the plasma considered in our

whistler instability simulation; it is unlikely, how-

ever, to be able to cope with unbalance resulting
from large-scale gradients of particle concentration,

as occur in our gravitational simulation.

In the long term, more powerful solutions to the

problem of load balancing will have to be found.

Probably the sole viable general solution is to di-

vide up the simulation domain with a non-uniform

grid, which is then mapped onto the processor array

either directly, or with a certain degree of latitude

as described above. If the large-scale distribution of

particles is likely to change in the course of a sim-

ulation, then the grid may have to be adaptive as

well. We hope to take part in these developments,
which could be tried out on the MPP in its present

form. Only when this problem has been adequately

dealt with can a fair comparison be made with other

architectures. We anticipate that the comparison is

likely to favor the MPP architecture, and to provide

strong motivation for the development of a second-
generation MPP specifically for particle and fluid
simulation.
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